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INTRODUCTION

In this paper, we generalize the lower bounds of de La Vallee Poussin
and Remes [2, p. 82] for the error of best uniform approximation from a
linear subspace. Precisely, let C[a, b) denote the space of all continuous
real valued functions defined on the closed interval [a, b) with norm
lUll = max{1 j(x)I : x E [a, b]}. Then, the above two results are

THEOREM I (de La Vallee Poussin). Let V be an n-dimensional Haar
subspace of C[a, b) and let f E C[a, b]. Let h E V and suppose that there exist
n + 1 points a ~ Xl < ... < Xn+l ~ b such that the error function
e(x) = j(x) - hex) satisfies

1. e(xi) =1= 0, i = 1,... , n + 1,

2. sgn e(xi+l) = -sgn e(xi), i = 1,... , n.

Then,

min I e(xi)I ~ p(f) == inf Ilf - p II.
0,;;; t,;;;n+l pev

THEOREM 2 (Remes). Let 1Tn-l denote the set of all algebraic polynomials
ofdegree ~ n - 1 and let f E C[a, b). Let h E 1Tn-l and suppose that there exist
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n + 1 points a :::;; Xl < .. , < Xn+l :::;; b such that the error function e(x) =
f(x) - h(x) satisfies

1. e(x;) =1= 0, i = 1,... , n + I,

2. sgn e(x;+l) = -sgn e(x;), i = I, ... , n.

Then,

min t(l e(x,)1 + I e(Xm) I :::;; Pn(j).
l~l~n

In what follows, we generalize these results to give analogous estimates
based on k points, k = 1,... , n. For the special cases k = 1, n our estimates
will be simply the de La Vallee Poussin estimate and the error of approxi­
mation on the points Xl"'" Xn+l , respectively. For the case k = 2, we have
a slight generalization of the Remes estimate in that we do not require the
approximants to be algebraic polynomials. Our precise generalization is
given in Section 4. In the next two sections, we develop the necessary tools
to prove our generalization.

2. DECOMPOSITION THEOREM

Fix n + 1 distinct points a:::;; Xl < X2 ... < Xn+l <: b. For each k,
I :::;; k :::;; n and v, I :::;; v:::;; n - k + I define M VIe by M VIe = {xv, Xv+l ,... , xV+Ie}'
Let Vn = <CPI ,.•. , CPn> be a fixed Haar subspace of C[a, b] and for each j,
I :::;; j :::;; n, set Vj = <CPt ,... , cpj) (Le., Vj is the subspace of C[a, b] spanned
by the functions CPI ,... , CPj). If Vie (k = 1,... , n) satisfies the Haar condition,
then, using the standard theory of Haar subspaces [2, p. 19], a linear
functional L} based on M VIe can be defined by

V+1e
Lvle(j) = L A~lef(xj),

j=1J

fE C[a, b], (1)

where N/ satisfies A~1e > 0, N/ =1= 0 for v :::;; j :::;; v + k, sgn N/ = (-1 )1-V,
L;~: I AV/ I = 1 and L:~: AV/cp".{Xj) = 0 for JL = 1,... , k. The existence and
uniqueness subject to A~1e > 0 and L;~: I Ajle I = 1, of such a linear functional
is well-known, as well as that

I L}(f)[ = inf {max If(x) - h(x)I}.
heVk xEMlIk

(2)

For consistency of notation we write Lv°(f) = f(xv) throughout this paper.
Using this notation, we now turn to proving our decomposition theorem.

THEOREM 3. Fix k, 1 :::;; k :::;; n; r, 0 :::;; r :::;; k; and v, 1 :::;; v :::;; n - k + 1
and assume that Vj satisfies the Haar condition for j = 1, ... , rand k (ifr = 0,
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then we only assume this for j = k). Then, there exists a unique decomposition
of the linear functional Lv'< in terms of the linear functionals L/,
j = v, ... , v + k - r

v+k-r

Lyk(f) = I A~;L/(f),
j=v

fE C[a, b), (3)

where the real numbers Aj~ are all different from zero, sgn Aj~ = (-I)1+Y

j = v, ...,v+ k - rand I,;::-r I Aj~ I = 1.

Proof This theorem is valid for r = °by our remarks concerning the
properties of Haar subspaces. Thus, we assume that r ~ 1. Since L y k is not
the zero linear functional, there exists a function rp E C[a, b) for which
Lyk(rp) = 1. Now, on the point set M Yk the functions rp, rpl ,... , rpk are linearly
independent. Thus,

k

f(x) = exrp(x) + I ex"rp,,(x),
,,~l

XE M yk , (4)

where ex, exl ,... , ex" are unique. We must show, since Lyk(rp) = I and
Lyk(rp,,) = 0, I-" = 1,... , k, that there exist numbers A~~ , uniquely determined,
that satisfy

v+k-r

I Nj~L/(rp,,) = 0,
j=v

Since, by definition of L/,

I-" = 1,... , k,

v+k-r

I Aj~L/(rp,,) = °
j=v

v+k-r

I Aj~L/( rp) = 1.
j=v

(5)

for I-" = 1,... , r and every choice of Aj~ , it is necessary and sufficient to show
that the (k - r + 1) X (k - r + 1) matrix

B == (L/(fr+1) ... L;+k-r(rpr+l»)

L/(rpk) L;+k-r(rpk)
L/(rp) L~+k-r( rp)

is nonsingular. To do this, we consider the transposed matrix BT and with
any fixed vector b = (by, ... , by+k_r)T, the system of linear equations

BTa = b, (6)

where a = (exr+l ,... , exk , ex)T represents a solution (if one exists). Now (6)
can be rewritten as

k

L/ (exrp + I ex,cp;) = b), .i = v, ... , v + k - r. (7)
,~r+l
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Thus, we wish to exhibit a function lfI in <<Pr+l , ..• , <Pk, <p) for which

153

j = v, ... , v + k - r (8)

is satisfied. Using the representation (1) of each L/, j = v, ... , v + k - r,
we have that (8) is equivalent to

clJl = b,

with lJI = (lJI(xv), ... , lJI(xv+lJ)T and

(9)

(

;\6r
...

c= .
o 0

o )o .
;\v+k-r,r

v+k

Since C has maximal rank k - r + 1 (as ;\~r > 0 for all p = v, ... , v + k),
the existence of values lJI(xp ), p = v, ... , v + k satisfying (9) is guaranteed.
Since <<PI'"'' <Pk , <p) forms a basis for M vk , we can find coefficients,
ex, exl , ... , exk so that

k

o/(x) = ex<p(x) + L ex,,<p,,(x)
,,~l

satisfies o/(Xi) = lJI(Xi)' i = v, ... , v + k. Thus, the function

k

lfI(Xi) = ex<p(x) + L ex,,<p.,(x)
,,~r+l

satisfies (8) as desired and its coefficients are a solution of (6). Hence, by
the Fredholm alternative, the matrix BT is not singular as it maps Rk-r+l onto
Rk-r+l. From this follows the existence and uniqueness of the numbers ;\j~ .

All that remains to be done is to prove the remaining assertions about the
numbers ;\j~ . Let us begin by showing that ;\j~ =1= 0 and that sgn ;\j~ = (-1 )i+v,

j = v, ... , v + k - r. Now, if r = k, then clearly, ;\~~ = 1. We prove the
general result using an induction argument on decreasing r. Thus, let us
assume that

v+k-r
L k = " NkL r

II 1.J 3r J'

J=II

for fixed r, 0 < r :(; k, where sgn ;\j~ = (-1 )i+v• Consider the relation

Using the representation (1) of each linear functional of this expression and
operating on ! E qa, bJ, where! (x,,) = ()Vi' , we find that ;\~r = ;\:~r_l;\~·r-l
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implying that ~~r-I > 0, since both A;;r and ~.r-I are positive. Likewise,
applying this expression to g E qa, b], where g(x,,) = OV+r." , gives

Since sgn A~~I = (-1)' and sgn A~~;·r-I = (_1)r-I, it follows that
sgn >'~~I.r-I = - 1. Therefore,

v+k~r

Lv
k = I ,\';~L/

J=V

v+k-r
= AVkAvr L r - I + " (A~k ,v-I.r + AVk,\'.r ) r-I

vr v,r-l v l..J )-l,f J.r-l Jr 3,r-l )
j=v+I

Uniqueness of the representation of Lv" in terms of L';-I gives

j = v + I,... , v + k - r,

and

which completes the inductive argument. Finally, to show that

v+k-r

I.L I A~~ I = 1,
]=v

take g E qa, b] so that L,.k(g) oF O. Let hE Vk be the best approximation
to g on the point set M vk ' From the standard theory of Haar subspaces,
we have that

I-' = v, ... , v + k.

Thus, for v ~j ~ v + k - r,

1+1'

L;(g - h) = I A~r(g(X,,) - h(x,J)
I-L=)

1+r

= Lv'C( g)( -1r I A;:( -1)"
j.J.=)

= (-1)1+1' L,h( g).
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Hence,
v+k-r

Lv"(g) = (-IYLvlc(g) L .\j~(-I)',
J=iJ

or
v+k-r v+k-r

I .\j~( - 1)i+v = I I .\j~ [ = 1,
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J=V J=V

as desired, completing the proof of the theorem. •

3. RECURSIVE COMPUTATION OF THE LINEAR FUNCTIONALS Lv"

In this section, we give a recursive scheme for constructing the values of
the linear functional L/' applied to a given function f To accomplish this,
first we must observe that L~-l(CfJIc) is never zero and has a constant sign as
a function of v, 1 :(; v :(; n - k + 2, provided V" satisfies the Haar condition.

LEMMA 1. For each k, 1 :(; k :(; n and v, I :(; v ~ n - k + 2, L~-l(CfJ,,) =1= 0
and sgn L~-l(CfJ,,) = sgn L~+f(CfJIc), v = 1,... , n - k + 1.

Proof Clearly, this is true for k = 1. For k ;;, 2, IL;-l(CfJ,,)1 equals the
minimal deviation in approximating CfJIc by Vic_Ion the point set Mv,"-l .
If this were zero, then there would exist ep E V"_l , equal to CfJIc at the k points
of Mv,lc-l' Since CfJIc rf: V"-l , the difference would then be a function in Vic
having k zeros that is not identically zero, contradicting the Haar condition.
To prove that sgn L~-l(CfJIc) = sgn L~+teCfJ,,), one uses the continuous depen­
dence of L~-l(CfJ,,) on the points to show that a new selection of points could
be made in the event sgn L~-l(CfJ") = -sgn L~+f(CfJ") (some v), on which
L~-l(CfJ •. ) = 0 holds. Thus, the above arguments preclude that this occurs. •

Using these facts, we can give a recursive scheme for calculating L/'(I),
fE C[a, b], 1:(; k :(; n, 1:(; v :(; n - k + 1, This scheme is displayed
in Table I, where

i = v, v + 1,... , v + k, (10)

m = 1, ... , k, j = v, ... , v + k - m. (11 )

In the next section, the values Lr(f) for fixed m andj = 1,... , n - m + 1
play a key role in generalizing the Theorems of de La Vallee Poussin and
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TABLE I

Lv°(f)

L~+1(f) Lv\f)

Remes. With this in mind, we would like to discuss the actual computation
of Lvk(l) in some more detail. In an actual computation one must compute
and store the values L/(cpJ for v = 1,2,... , k, r = 0, 1, ... , v-I and
j = v, ... , v + k - r, in addition to the values Lj°(l), j = v, ... , v + k in
order to calculate Lvk(l). Thus, instead of Table I we possibly should have
written

TABLE II

LVo('Pl) Lv°(f)

Lv'('P2) L~+l('Pl) L~+1(f) Lv'(f)

L~+1('P2) L~+'<'Pl) L~"2(f) L~+1(f)

L~-l('Pk)

L~~~('Pk) ...... L~+k_l('P2) L~+k('Pl) L~+M) L~+k-tU) ... Lvk(f)

The above procedure can be interpreted in terms of the process of Gaussian
elimination. Indeed, consider the following system of linear equations

n

L 0Wv(x,,) + (-I)" A = f(x,,),
v=l

t.t = 1,... , n + 1,

in the unknowns (Xl , ... , (Xn, A. If one applies Gaussian elimination (no
pivoting) with the constraint that the coefficient of A is (-1)" in the t.tth row
in each step, then, after (k - 1) steps, the last n - k + 1 rows are

n

L (XvL~-I(CPJ + (-I)" A = L~-l(f),
v-k

t.t = 1,... , n - k + 1.
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(12)

f(xJ I
f(;Hk)

CfJk+l(Xj) I

CfJk+~(XHk)

Before proceeding to our desired theorem, we wish to relate the above
table with the notion of generalized divided differences with respect to a Haar
system. In [1], the kth divided difference off at Xj , •.• , XHk with respect to
the Haar subspaces VI' = <CfJl ,... , CfJk) and Vk+l = <CfJl ,•.. , CfJk ,CfJk+l> is
defined by

I

CfJb"j)

LJ(f, X j ,."", XHk) = :
CfJl(XHk)

~ I.::tl ...
Observe that the kth divided difference (12) is simply a linear functional, LJ,
based on the points Xj , ••• , XHk' annihilating V k = <CfJl ,•.. , CfJk) and
normalized by the requirement that LJ(CfJk+l) = 1. The assumption that
Vk+l is a Haar subspace implies that LJ is uniquely determined.

Now, suppose that V k = <CfJl ,.•. , CfJk) is a Haar subspace of C[a, b] for
k = 1,... , n. Because of the uniqueness of LJ it is easily shown that

(13)

for k = 1,2"00' n - 1. In particular, with the formulas

v = 1'00" 11 -;- 1 (14)

and

,,1(1, ) = LJ(f, xv+l '00', Xv+k) - LJ(f, XV '00" Xv+k-l)
.... ,Xv,,,,, xv+k - A( ) A( ) ,

.... CfJk+l' x v+1 , ... , x v+k - .... CfJk+l' Xv,,,,, xV+k"-l

v = 1,... ,11, k = 1,... ,11 - V + 1; (15)

one can construct a generalized divided difference table with respect to given
points and a given Markoff system in precisely the same manner that the
standard divided difference table is constructed. For the special case that
CfJi(X) = Xi, this is the standard divided difference table and in this case,
one has that LJ(CfJk+l , XV,"" Xv+k-l) = Xv + ... + xv+k-l' so that it is not
necessary to calculate the differences occurring in the denomination of (15).
This, incidentally, reduces the operation count of multiplications and
divisions from D(n3) for the general case to O(n2) for this special case. In
a future paper, we intend to discuss the use of these general divided differences
for interpolation.
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4. MAIN THEOREM

Now, we turn to proving the desired lower estimate. This shall be done
using the decomposition theorem on Lin,

n-m+l

L1n(f) = L A;::'L j m(f),
J~l

where m is a fixed integer satisfying °~ m ~ n. In order that the results
of Theorem 3 apply, it is only necessary to assume that Vr = <CPl , ... , CPr>
is a Haar subspace of C[a, b] for r = 1, ... , m and n.

THEOREM 4. LetfE C[a, b], h E Vn and suppose that Vr is a Haar subspace
of C[a, b] for r = 1,... , m and n, where °~ m < n. If there exists a set
ofn + 1points, a ~ Xl < X2 < ... < Xn+l ~ b, such that the error function
e(x) = f(x) - hex) satisfies

1. Lr(e) =1= 0, j = 1,... , n - m + 1,

2. sgn Lr(e) = -sgn L~l(e), j = 1,... , n - m,

where the linear functionals Lr, j = 1, ... , n - m + 1 are based on the points
Xj ,... , Xj+m . Then

Proof It is known that I L1n(f) I ~ Pn(f). Thus,

n-m+l
L: I A;::' II Lr(e)l,
J=l

~ min I Lr(e)l. •l';;;/';;;n-m+l

COROLLARY 1. Suppose CPl , ... , cpn form a Markoff system in C[a, b],
f E C[a, b] and h E Vn . If there exists a set of n + 1 points, a ~ Xl <
X2 < ... < Xn+1 ~ b, such that the error function e(x) = f(x) - hex)
satisfies

1. e(xi) =1= 0, i = 1,... , n + 1,

2. sgn e(xi) = -sgn e(Xi+I), i = 1,... , n.
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min I e(xJI ~ min I L/(e)1 ~ ... ~ I L nl(e), ~ Pn(f).
1<;j~n+l l'--j~n
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This is easily proved with repeated applications of the decomposition theorem.
Observe that for the special case of epix) = xv-I, v = 1,. .. , n, and m = 1,

Theorem 4 is precisely the Remes estimate. Also, Theorem 4 is weaker than
the de La Vallee Poussin estimate for Pn(f) (m = 0 case), since one only
need assume that Vn is a Haar subspace for this result.

5. THE POLYNO~IAL CASE

Theorem 4 is even new in the case that epv(x) = xv~I, v = 1,... , n. There­
fore, it may be of interest to outline briefly a second proof of the decom­
position theorem for this case. This proof uses Cauchy's integral formula
and is the method first used in this study.

Thus, let A be a region in the complex plane containing the closed interval
[a, b]. Let f be holomorphic in A and real on [a, b) and let C be a simple
closed rectifiable path in A containing [a, b] in its interior. Integrating in
the positive direction, set

T/'(f) = C/,: f f(z) dz ,
2m c W,'k(Z)

where a ~ Xv < xv-rl < .. , < xv+!. ~ b,

(

V+k ( l)i )~1
C" = L -: (-I)',

)~" wv,,(x)

WVk(Z) = (z - x.) ... (z - X,'H)'

Clearly, Tv" is a linear functional on A[a, b], the linear space of functions
holomorphic in A and real on [a, b], which annihilates 7Tn~l • Using the residue
theorem, one gets that

This relation can be considered to be a continuation of T/ to C[a, b].
To prove the decomposition theorem for functions in A [a, b], one must

prove first a somewhat unusual partial fraction decomposition. Namely,

LEMMA 2. Let r be a nonnegath'e integer, r ~ k. Then, there exists a
unique partial fraction decomposition

I
wv".(z)

(16)
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where the (real) numbers d;; are all different from zero and

.i = v, ...• v + k - r. (17)

Proof Multiplying (16) by wviz) and comparing the coefficients of the
powers of z leads to an inhomogeneous system of k - r + 1 linear equations
for the k - r + 1 unknowns dj: . The corresponding homogeneous system
is equivalent to the decomposition of the zero function. It is easily seen that
this system has only the trivial solution. Therefore, the numbers d;: are
uniquely determined. For r = k - I we have

Thus. d:\_l < 0 and d:~U-l > 0, which corresponds to (17). Induction
completes the argument.

Multiplying (16) by C/j(z) and integrating gives Theorem 3 with

r/' = L/ and

6. A NUMERICAL EXAMPLE

Let X = {Xi: x, = i/64. i = O. I, .... 641, lex) = tan X, ep,(x) = xi-lex,
i = 1, ... , 5. We use the above techniques in conjuction with Remes multiple
exchange for finding the best approximation to lex) = tan x from
V = "eJ'. xeX

, .... x4e"') on X = {x, : Xi = i/64, i = 0, I.... , 64}. Taking x 9 ,

X 18 • X 27 • X36 , X45 • and X54 as ou~ initial guess. we find that

hl(x) = 0.00277e'" + 0.96068xe'" - 0.80272x2e'" + 0.3756Ix3e'" + 0.03142x4ex

is the best approximation to f on this set from V with error 0.000074. Per­
forming the multiple exchange gives new extreme points X o • X14 , X26 • X39 ,

x50 , X 64 , where I](X64) - hl (x64) 1= Ilf - hIli. Applying our lower estimates
to f - hi at these points. gives the table (use Table I).

TABLE III

-0.002774

0.000140

OO75סס.0-

0.000094

-0.000280

0.014042

-0.001601

0.000111

-0.000084

0.000179

-0.006412

-0.000875

0.000099

-0.000131

0.002629

-0.000509

0.000114

-0.001227

-0.000315

0.000607 0.000452
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Thus, 0.000075:(: 0.000084 ~ 0.000099:(: 000114:(: 0.000315 ~ 0.000452 :(:
dist(f, V) ~ 0.01402. Continuing, we get after the second exchange, that
0.00045 :(: 0.00049 :(: 0.00061 :(: 0.00066:(: 0.00069 :(: 0.00094 C;;
dist(f, V) :(: 0.0027; after the third exchange, that 0.0094 < 0.00094 :(:
0.00094 < 0.00095 < 0.000978 :(: 0.001005 :(: dist(f, V) 'C; 0.001250,
showing that we now are within 0.000245 of the error of approximation with
h3 (a relative error of less than 21 %). At the end of the fourth exchange,
we find that 0.00010059 :(: 0.00010059 :(: 0.00010066 :(: 0.00010076 ~

0.00010087 :(: 0.00010091 :(: dist(f, V) :(: 0.00010192, so that we are now
within 0.000001 of the error of approximation with h4 (a relative error of
less than 1 j:'). The Remes algorithm terminated after the fifth exchange.
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